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An improved approach to interferometry using sinusoidal phase shifting balances several harmonic
components in the interference signal against each other. The resulting computationally efficient phase-
estimation algorithms have low sensitivity to errors such as spurious intensity noise, vibration, and er-
rors in the phase shift pattern. Specific example algorithms employing 8 and 12 camera frames illustrate
design principles that are extendable to algorithms of any length for applications that would benefit from
a simplified, sinusoidal phase shift. © 2009 Optical Society of America
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1. Introduction

Interferometers for distance measurement and sur-
face profiling often employ a phase shifting technique
to determine interference phase [1]. An alternative to
the conventional linear phase shift is a sinusoidal
phase shift, which has the benefit of relaxing require-
ments on the phase shifting device. A sinusoidal
phase shift is easier to implement in many practical
systems, and facilitates high-speed, continuous data
averaging, which increases performance in the pre-
sence of electronic, optical, and environmental noise.
Algorithms for sinusoidal phase shifting interfero-

metry (sinusoidal PSI) have a form similar to the
more familiar linear phase shifting interferometry
(linear PSI) algorithms. A pioneering example is
the Sasaki four-frame sinusoidal PSI algorithm
published in 1987, which reads

tanðθÞ ¼ I0 þ I1 − I2 − I3
I0 − I1 þ I2 − I3

; ð1Þ

where the I0;1;2;3 are interference intensity samples
acquired sequentially during a complete sinusoidal

phase shift cycle [2,3]. From the appearance of this
algorithm, it is clear that sinusoidal PSI does not pre-
sent any special computation problems when com-
pared to linear PSI, which employs algorithms of
the same basic form. Indeed, sinusoidal PSI has been
shown to be effective for various instruments from
Fizeau interferometers [4] to interference micro-
scopes [5,6]. Nonetheless, sinusoidal PSI has not en-
joyed nearly the same popularity as linear PSI. Part
of the reason for this is the vast literature on linear
PSI and the extensive catalog of error-compensating
algorithms that have grown out of this analysis.

The present work takes a second look at sinusoidal
PSI, with the goal of developing a class of error-
compensating algorithms to enhance its range of ap-
plication [7,8]. Error compensation is achieved by
summing the contributions of several of the harmo-
nic components of the interference signal in a way
that automatically balances error contributions.
The conclusion is that sinusoidal PSI can be signifi-
cantly improved in robustness while retaining the
benefits of simplified phase shifting.

2. Sinusoidal Phase Shifting

The laser Fizeau interferometer of Fig. 1 serves as an
example instrument fordeveloping the concepts for si-
nusoidal phase shifting. The instrument determinesa
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height h atmultiple positions in the field of view from
the interference phase θ at a wavelength λ:

θ ¼ 4πh=λ: ð2Þ
The phase is detected from the detected interference
intensity

Iðθ; tÞ ¼ qf1þ V cos½θ þ ϕðtÞ�g; ð3Þ
where V is the fringe visibility, q is the average inten-
sity, and ϕðtÞ is a controlled phase shift. In sinusoidal
PSI, the phase shift can be expressed as a cosine of
amplitude u:

ϕðtÞ ¼ u cos½αðtÞ þ φ�; ð4Þ
where

αðtÞ ¼ 2πf t: ð5Þ
Here f is a frequency andφ is a timing offset related to
the triggering of the phase shift with respect to the
camera. I have chosen a cosine instead of a sine in
Eq. (4) so that the phase shift is symmetric about zero
when the timing offset φ is zero, as shown in Figs. 2
and 3.
Using the phase α in place of the time variable, the

intensity in Eq. (3) expands to

Iðθ; αÞ ¼ qþ qV cosðθÞ cos½ϕðαÞ� − qV sinðθÞ sin½ϕðαÞ�:
ð6Þ

From the real and imaginary parts of the Jacobi–
Anger expansion [9],

exp½iu cosðαÞ� ¼ J0ðuÞ þ 2
X∞
ν¼1

iνJνðuÞ cosðναÞ; ð7Þ

the intensity (6) is rewritten as

Iðθ; αÞ ¼ qDðθÞ þ qV cosðθÞCðαÞ þ qV sinðθÞSðαÞ;
ð8Þ

where

DðθÞ ¼ 1þ VJ0ðuÞ cosðθÞ; ð9Þ

SðαÞ ¼ 2
X∞

ν¼1;3;5…

ð−1Þðνþ1Þ=2JνðuÞ cos½νðαþ φÞ�; ð10Þ

CðαÞ ¼ 2
X∞

v¼2;4;6…

ð−1Þν=2JνðuÞ cos½νðαþ φÞ�; ð11Þ

and the Jν are Bessel functions, as shown in Fig. 4.
The time-dependent portion of the intensity signal is
therefore a sum of harmonics ν of the fundamental
phase shift frequency.

Detection of the intensity signal requires collecting
photons over a dwell time or integrating bucket, ef-
fectively averaging the signal over a portion of the
phase shift. The mean value of the intensity at the
phase shift phase α averaged over the interval β is

�Iðθ; αÞ ¼
Zαþβ=2

α−β=2

Iðθ; α0Þdα0; ð12Þ

where Iðθ; α0Þ is the instantaneous intensity as given
by Eq. (8), and α0 is the variable of integration over

Fig. 1. LaserFizeau interferometer foroptical testing.Mechanical
motion of approximately 1 micron excursion introduces controlled
phase shifts while the camera captures a sequence of interference
patterns.

Fig. 2. Sinusoidal phase shift ϕðαÞ for a phase shift amplitude u ¼
π and φ ¼ 0.

Fig. 3. Interference signal IðαÞ resulting from the sinusoidal
phase shift ϕðαÞ shown in Fig. 2 for an interference phase θ ¼ π=2.
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the dwell time expressed as the phase interval β. The
effect of the frame integration is to attenuate the
higher frequency harmonics by a factor

BðνÞ ¼ sinðνβ=2Þ
νβ=2 : ð13Þ

The intensity signal is now

�Iðθ; αÞ ¼ qDðθÞ þ qV cosðθÞ�CðαÞ þ qV sinðθÞ�SðαÞ;
ð14Þ

where DðθÞ is as in Eq. (9), and

�SðαÞ ¼ 2
X∞

ν¼1;3;5…

ð−1Þðνþ1Þ=2BðνÞJνðuÞ cos½νðαþ φÞ�;

ð15Þ

�CðαÞ ¼ 2
X∞

v¼2;4;6…

ð−1Þν=2BðνÞJνðuÞ cos½νðαþ φÞ�: ð16Þ

3. Phase Detection

The phases of the harmonics cos½νðαþ φÞ� in Eqs. (15)
and (16) are independent of the interference phase θ.
Thus, unlike linear phase shifting, we do not deter-
mine θ from the an analysis of the phases of periodic
components of the signal �Iðθ; αÞ. Rather, in sinusoidal
PSI, the strategy is to evaluate the strengths of the
odd and even harmonics.
A frequency analysis of the signal �Iðθ; αÞ acquired

over a range of phase shifts would allow us to calcu-
late the strengths of the odd and of the even harmo-
nics. Inspection of Eq. (14) shows that the odd
harmonics vary as sinðθÞ and the even harmonics
vary as cosðθÞ. The phase θ follows therefore from
the ratio of the strengths of the odd and even harmo-
nics, after properly normalizing for �SðαÞ and �CðαÞ.
A straightforward way to perform the required fre-

quency analysis would be a complete complex Four-
ier transform to directly view the frequency content.
However, a full Fourier analysis requires dense sam-
pling to avoid aliasing and a software procedure that
is unnecessarily intensive.

Some a priori information leads to a calculation
that is as computationally efficient as comparable
algorithms for linear phase shifting.

First, the frequencies of all of the harmonics ap-
pearing in the intensity data are well known because
they are tied to the fundamental sinusoidal phase
shift frequency f provided by the phase shifting elec-
tronics. These frequencies have nothing to do with
the measuring geometry, the wavelength, or any
other attribute of the interference measurement,
and can be established with almost arbitrary preci-
sion. Therefore it is not necessary to search through a
continuum of frequencies to locate the harmonics—it
is only required to measure the strengths of specific
frequencies that are integer multiples of the
fundamental.

Second, for phase shift amplitudes of 2π or less,
only the first few harmonics are of significant
strength. Thus we need only identify and Fourier
analyze a handful of fixed, low-frequency harmonics
that we wish to use.

Third, because the timing offset φ is a fixed value
characteristic of the electronic timing of the sinusoi-
dal phase shifting drive signal, it is not necessary to
solve simultaneously for the magnitude and phase of
the harmonic components in the interference signal.
It follows that we are free to set the timing offset φ to
any convenient fixed value. In this paper, I set φ ¼ 0
so that the signal �Iðθ; αÞ includes only cosine func-
tions that are symmetric about α ¼ 0. The coeffi-
cients of a complex Fourier analysis are then
purely real, and we need only perform the cosine
portion of the Fourier analysis.

Using these simplifications, define a sequence of P
phases αj of the sinusoidal phase shift spaced byΔα ¼
2π=P and starting at a sampling offset α0 ¼ π=P:

ϕj ¼ u cosðαjÞ; ð17Þ

αj ¼ jΔαþ α0; ð18Þ

j ¼ 0; 1; 2…P − 1: ð19Þ

Most often, the phase interval β is also equal to the
phase increment Δα. The frequency analysis follows
from the normalized, real-valued Fourier-cosine
transform

Hðθ; νÞ ¼

P
j
cosðναjÞ�IjðθÞP
j
cosðναjÞ2

ð20Þ

for a given frequency ν. We expect from Eqs. (15) and
(16) that the relevant frequencies are at specific

Fig. 4. Strength of even (solid lines) and odd (dashed lines) har-
monics in the SinPSI signal as a function of the sinusoidal phase
shift amplitude u.
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integer harmonics indexed by ν. Let us define there-
fore a normalized sampling vector

hν;j ¼
cosðναjÞP

j
cosðναjÞ2

ð21Þ

to detect the θ-dependent amplitude of the cosine at
the discrete harmonic ν, which is nowan integer index
for the harmonic HνðθÞ:

HνðθÞ ¼
X
j

hν;j�IjðθÞ: ð22Þ

Sparse sampling means that the single-frequency
transform HνðθÞ will be sensitive to higher integer
frequencies than just the selected value ν because of
aliasing. We require therefore that the sampling vec-
tors h be sensitive only to even or odd harmonics, as
the case may be. We further require that

X
j

hν;j ¼ 0; ð23Þ

which is equivalent to the requirement that the DC
portion of the signal have no influence on the result.
Note that the sampling vector definition Eq. (21)
and the choice of α in Eq. (18) ensure that Eq. (23)
is satisfied.
As an example, one approach would be to compare

the first harmonic H1ðθÞ to the second harmonic
H2ðθÞ to determine θ. With some differences in as-
sumptions and notation, this is essentially the foun-
dation of the 1987 Sasaki method. Unfortunately,
using only these two harmonics leads to a high sen-
sitivity to error when compared to modern error-
compensating linear phase shift algorithms. As a
specific example, the Sasaki algorithm is 20× more
sensitive to a 10% error in phase shifter calibration
than the well known Schwider–Hariharan linear PSI
algorithm [10].

4. Balancing Multiple Harmonics to Improve
Performance

There aremany known techniques for improving per-
formance in conventional linear PSI through the de-
velopment of error-compensating algorithms. These
include Fourier transform windows, characteristic
polynomials, extended averaging, self-calibration,
and so on, as summarized in Ref. [1]. Unfortunately,
none of these methods are of any relevance for im-
proving sinusoidal PSI algorithms.
I propose here to improve the robustness of phase

detection in sinusoidal phase shifting by taking ad-
vantage of the many harmonics present in the inter-
ference signal of Eq. (14) to balance the results in the
presence of errors. To this end, we sum a series of
coefficient vectors hν for two or more harmonic
frequencies ν using weights γν to obtain vectors
hodd, heven:

hodd;j ¼
X
ν¼odd

γνhν;j; ð24Þ

heven;j ¼
X

ν¼even
γνhν;j: ð25Þ

These summed harmonics lead to values that are re-
presentative of the relative strengths of the odd and
even harmonics, respectively:

HoddðθÞ ¼
X
j

hodd;j
�IjðθÞ; ð26Þ

HevenðθÞ ¼
X
j

heven;j
�IjðθÞ: ð27Þ

Note that properly designed coefficient vectors hodd,
heven are orthogonal,

X
j

hodd;jheven;j ¼ 0; ð28Þ

and are sensitive only to the appropriate harmonics:

X
j

hodd;j cosðναjÞ ¼ 0 for ν ¼ 2; 4; 6…; ð29Þ

X
j

heven;j cosðναjÞ ¼ 0 for ν ¼ 1; 3; 5…: ð30Þ

Assuming that these conditions are met, the phase θ
follows from the quadrature formula

tanðθÞ ¼ Γeven

Γodd

HoddðθÞ
HevenðθÞ

ð31Þ

that includes normalization constants Γodd, Γeven cal-
culated from the ideal signal Eqs. (15) and (16) for a
specific phase shift amplitude u ¼ u0 and offset
φ ¼ 0:

Γodd ¼ 2
X∞

ν¼1;3;5…

ð−1Þðνþ1Þ=2Jνðu0ÞBðνÞ
X
j

hodd;j cosðναjÞ;

ð32Þ

Γeven ¼ 2
X∞

ν¼2;4;6…

ð−1Þν=2Jνðu0ÞBðνÞ
X
j

heven;j cosðναjÞ:

ð33Þ

The design flow is as follows:

1. Select a series of harmonics indexed by ν to be
included in the algorithm.

2. Calculate the corresponding vectors hν;j using
Eq. (21) for a sequence of P phases αj, as in Eq. (18).

10 December 2009 / Vol. 48, No. 35 / APPLIED OPTICS 6791



3. Sum the vectors hν;j using weights γν to con-
struct final coefficients hodd, heven according to
Eqs. (24) and (25). The algorithm design centers on
the choice of these weights γν and of the phase-shift
amplitude u0.
4. Calculate the normalization constants Γodd,

Γeven using Eqs. (32) and (33).
5. Use Eq. (31) to calculate the phase θ.

5. Evaluation Functions to Guide Algorithm Design

The previous section provides the essential toolbox
for generating new algorithms, apart for one missing
tool: a means to provide feedback and direction in the
design process so as to arrive at the optimum set of
algorithm coefficients.
Although there are many different error sources in

interferometers, the error propagation for sinusoidal
phase shifting can in most cases be analyzed by eva-
luation of the sensitivity of the algorithm to the
phase shift amplitude u defined in Eq. (4). The sen-
sitivity of the sine (odd-harmonic) and cosine (even-
harmonic) portions of the quadrature function in
Eq. (31) map through the normalization constants
Γodd, Γeven, and will be incorrect if the amplitude u
differs from the design value u0.
Let use define therefore the following filter

functions:

FoddðuÞ¼2
X∞

ν¼1;3;5…

ð−1Þðνþ1Þ=2JνðuÞBðνÞ
X
j

hodd;jcosðναjÞ;

ð34Þ

FevenðuÞ ¼ 2
X∞

ν¼2;4;6…

ð−1Þν=2JνðuÞBðνÞ
X
j

heven;j cosðναjÞ;

ð35Þ
which show the sensitivity to phase shift amplitude u
of the numerator and denominator, respectively, in
the quadrature formula Eq. (31) for θ. The functions
Fodd, Feven are the same as the constants Γodd, Γeven
given in Eqs. (32) and (33) apart from the replace-
ment of the fixed value u0 with the variable value
u. Thus when u ¼ u0,

Γodd ¼ Foddðu0Þ; ð36Þ

Γeven ¼ Fevenðu0Þ: ð37Þ
The term filter function is intentionally analogous to
functions of the same name but of an entirely differ-
ent form often used to guide algorithm design for
linear phase shifts [11].
As an illustration of how these functions work, con-

sider a simple, non error compensating algorithm
based only on the first two harmonics ν ¼ 1 and ν ¼
2 and just 4 sample shifts

αj ¼ jπ=2 ð38Þ

for j ¼ 0; 1; 2; 3. Using Eq. (21) and setting γ1 ¼ −2,
γ2 ¼ −4, the algorithm coefficients are

hodd ¼ ð−1 0 1 0 Þ; ð39Þ

heven ¼ ð−1 1 −1 1 Þ: ð40Þ
The normalization constants from Eqs. (32) and (33)
for a phase shift excursion u0 ¼ 2:45 are

Γodd ¼ 1:5718; ð41Þ

Γeven ¼ 2:2283; ð42Þ
and the phase calculation of Eq. (31) simplifies to

tanðθÞ ¼ 1:4176
�I0 − �I2

�I0 − �I1 þ �I2 − �I3
: ð43Þ

This algorithm has similar characteristics as the
Sasaki 1987 algorithm [2], but with a zero phase
offset φ.

Figure 5 shows the behavior of the two filter func-
tions FoddðuÞ and FevenðuÞ plotted as a function of the
sinusoidal phase shift amplitude u for the 4-frame
algorithm of Eq. (43). The two curves are normalized
to the constants Γodd and Γeven, respectively, so that
the curves are equal to one at the design amplitude
u0 ¼ 2:45. What is most evident is that the curves di-
verge rapidly when the amplitude u moves away
from the design amplitude u0. This shows that the
ratio of the numerator to the denominator in
Eq. (43) is an unstable function of u. Among other
things, this explains why an algorithm based only
on the first two harmonics ν ¼ 1 ν ¼ 2 requires a pre-
cise calibration of the phase shift amplitude. A
further observation is that the filter functions show
high sensitivity to sinusoidal modulation amplitudes
far from the design amplitude u0 ¼ 2:45, which
makes the algorithm sensitive to spurious phase
modulations and noise.

From these observations, we can infer the follow-
ing design rules: First, the normalized filter func-
tions Fodd=Γodd and Feven=Γeven should be near
maximum, matched in value, and matched in deriva-
tive at the design amplitude u0. Second, the filter
functions should have low values far from the design
amplitude u0, particularly at integer multiples of u0,
so as to reduce sensitivity to nonlinearities in the
phase shift and in the detector. Following these
two basic design rules leads to robustness and error
resistance.

6. Error-Compensating Algorithms

As one would expect, the ability to shape the filter
functions FoddðuÞ and FevenðuÞ depends on how many
harmonics are available, a number that increases
with increased sample number P. Higher numbers
of harmonics also allows for additional constraints
and higher performance.
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As a first example, an 8-frame algorithm shows
how to include just one additional harmonic to
achieve a significant improvement. To detect and
balance harmonics ν > 2, a Δα ¼ π=4 step moves
the Nyquist frequency from 2 to 4, giving us greater
control over the relative weighting of the first and
third harmonics. The data acquisition pattern as
illustrated in Fig. (6) is now

αj ¼ jπ=4þ π=8 ð44Þ

for j ¼ 0; 1…7. Using Eq. (21) for the first, second,
and third harmonics,

h1 ¼ 1
4
½ ς1 ς3 −ς3 −ς1 −ς1 −ς3 ς3 ς1 �; ð45Þ

h2 ¼ 1

4
ffiffiffi
2

p ð1 −1 −1 1 1 −1 −1 1 Þ; ð46Þ

h3 ¼ 1
4
½ ς3 −ς1 ς1 −ς3 −ς3 ς1 −ς1 ς3 �; ð47Þ

where

ς1 ¼ cosðπ=8Þ; ð48Þ

ς3 ¼ cosð3π=8Þ: ð49Þ

We choose the weights γν and the design amplitude
u0 either bymathematical optimization or interactiv-
ity, using a real-time visual display of FoddðuÞ and
FevenðuÞ. A convenient starting point for the 8-frame
algorithm is to set

γ1 ¼ −4ς3=ðς21 þ ς23Þ; ð50Þ

γ2 ¼ −4
ffiffiffi
2

p
; ð51Þ

γ3 ¼ 4ς1=ðς21 þ ς23Þ; ð52Þ

so that we have simple, integer-coefficient vectors

hodd ¼ ð0 −1 1 0 0 1 −1 0 Þ; ð53Þ

heven ¼ ð−1 1 1 −1 −1 1 1 −1 Þ: ð54Þ

The next step is to choose a phase shift excursion u0
that at the same time provides high signal strength
and stable agreement between the normalized func-
tions Fodd=Γodd and Feven=Γeven near the design am-
plitude u0. A value near u0 ¼ 2:93 is close to the
maximum values of Fodd=Γodd and Feven=Γeven and
at the same time provides a match for the derivatives
of these two functions. The normalizations from
Eqs. (32) and (33) are

Γodd ¼ 2:9432; ð55Þ

Γeven ¼ 4:8996; ð56Þ

Γeven=Γodd ¼ 1:6647: ð57Þ

Using the inherent symmetry of the data acqui-
sition (see Fig. 6), the phase estimation in Eq. (31)
simplifies to

tanðθÞ ¼ 1:6647ðg1 − g2Þ
−g0 þ g1 þ g2 − g3

; ð58Þ

where we average symmetric camera frames
according to

gj ¼ �Ij þ �I7−j; j ¼ 0; 1; 2; 3: ð59Þ

The behavior of FoddðuÞ and FevenðuÞ shown in Fig. 7
confirms that the 8-frame sinusoidal PSI algorithm
using three harmonics ν ¼ 1; 2; 3 is much more
stable with phase shift amplitude u than an algo-
rithm based on only the two harmonics ν ¼ 1; 2.
Specifically, the first derivatives of Fodd=Γodd and
Feven=Γeven are identical at u0 for Fig. 7, whereas they
are opposite for Fig. 5. One consequence is that the
phase error for the 8-frame sinusoidal PSI algorithm
with a phase shifter calibration error of 10% is only
0:34°rms compared to 5°rms for the 4-frame algo-
rithm, an improvement of more than an order of
magnitude.

Following a similar interactive optimization, the
following 12-frame algorithm based on the first five
harmonics, ν ¼ 1; 2::5, has a phase increment Δα ¼
π=6 and a sampling offset α0 ¼ π=12:

Fig. 5. Variation in the normalized filter functions Fodd=Γodd and
Feven=Γeven as a function of the sinusoidal phase shift amplitude u
for the 4-frame sinusoidal PSI algorithm in Eq. (43). The design
amplitude u0 is shown by the vertical line at 2:35 rad.
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tanðθÞ

¼ 1:2461ðg0−g5Þ−1:5525ðg1 −g4Þ−2:5746ðg2 −g3Þ
0:2707ðg0þg5Þ−2:6459ðg1þg4Þþ2:3753ðg2þg3Þ

;

ð60Þ
where now we average symmetric camera frames
according to

gj ¼ �Ij þ �I11−j; j ¼ 0; 1; 2; 3: ð61Þ

As shown in Fig. 8, the normalized filter functions
Fodd=Γodd and Feven=Γeven follow each other very clo-
sely over a broad range about the design amplitude
u0 ¼ 3:384. For this algorithm, u0 is intentionally not
quite at the peak sensitivity of the curves Fodd=Γodd
and Feven=Γeven so that Fodd ¼ 0 and Feven ¼ 0 at
u ¼ 2u0, thereby reducing sensitivity to several error
sources that generate false phase modulations, in-
cluding, in particular, quadratic nonlinearity in the
detector and multiple reflections within Fizeau
cavities.
Assuming that we allow that the algorithm coeffi-

cients do not need to be integers, there is an infinite
variety of solutions based on how much emphasis is
placed on certain algorithm features. Sinusoidal PSI
algorithms for 8, 10, 12, 14, 16, and 20 camera frames
have been derived in this way using the harmonic
balance method, generally with increasingly good
performance as the number of camera frames
increases.

7. Error Sensitivity

References [7,8] provide analytical formulas for a
wide range of error sources for sinusoidal phase
shifting interferometry. Here I present a few key
results using the 4-, 8-, and 12-frame algorithms
as examples.

A. Phase Shift Calibration

A classic performance criterion for PSI is sensitivity
to deviations in the phase shift excursion from the
expected or optimal value. Some of these variations

are inevitable—in a high-NA spherical Fizeau cavity
with a mechanical phase shifting mechanism, the
phase shift excursion varies as a function of angle.

The standard deviation of the phase error ε from
phase shift calibration error δu is

εstdvðδuÞ ¼
1

2
ffiffiffi
2

p jρðδuÞ − 1j; ð62Þ

where

ρðδuÞ ¼ Fevenðu0 þ δuÞ
Foddðu0 þ δuÞ

Γodd

Γeven
: ð63Þ

The error is cyclic at twice the rate of θ, just as in
linear phase shifting. Figure 9 summarizes the
magnitude of the error for the 4-, 8-, and 12-frame
algorithms.

Fig. 6. Data acquisition pattern for the 8-frame algorithm.

Fig. 7. Variation in the normalized filter functions Fodd=Γodd and
Feven=Γeven as a function of the sinusoidal phase shift amplitude u
for the 8-frame sinusoidal PSI algorithm in Eq. (43). The design
amplitude u0 is shown by the vertical line at 2:95 rad.

Fig. 8. Variation in the normalized filter functions Fodd=Γodd and
Feven=Γeven as a function of the sinusoidal phase shift amplitude u
for the 12-frame sinusoidal PSI algorithm in Eq. (60). The design
amplitude u0 shown by the vertical line at 3:384 rad is positioned
so that the algorithm sensitivity is zero at u ¼ 2u0 ¼ 6:768.
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B. Additive Random Noise

Random noise changes the interference intensity
signal from Eq. (3) to

Iðθ; tÞ ¼ qf1þ V cos½θ þ ϕðtÞ�g þ nðσ; tÞ; ð64Þ

where σ is the rms of the random noise nðσ; tÞ. A
mathematical analysis of additive random noise
for SinPSI leads to the following formula for the
rms phase error:

εrms ¼
� σ
qV

�
1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
peven

Γeven

�
2
þ
�
podd

Γodd

�
2

s
; ð65Þ

where

podd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
j

ðhoddÞ2j
s

; ð66Þ

peven ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
j

ðhevenÞ2j
s

: ð67Þ

The summary results of Table 1 tell us the expected
rms phase error εrms for an rms noise level σ=qV . The
tabulated results are scaled by 633nm=4π. As ex-
pected, the sensitivity to noise declines with the
number of camera frames, approximately at the rate
of the square root of the number of frames. This is a
similar result to conventional linear phase shifting.

C. Vibration

Because the data acquisition takes place over time,
sensitivity to vibration can be an issue for PSI. Given
a pure, single-frequency vibration, the intensity
modifies to

Iðθ; α; ν0Þ ¼ qf1þ V cos½θ þ ϕðαÞ þ nðα; ν0Þ�g; ð68Þ

where for a vibrational frequency ν0, rms σ, and phase
ξ, the vibration is

nðα; ν0Þ ¼
ffiffiffi
2

p
σ × cos½ν0αþ ξ�: ð69Þ

The error propagation for vibration can be calcu-
lated analytically for small vibrational amplitudes,
as reported in Refs. [7,8]. Figure 10 shows that the
simple 4-frame SinPSI algorithm has a high sensitiv-
ity to vibration over a broad frequency range;
however, the error-compensating 8- and 12-frame al-
gorithms are much improved. The 12-frame algo-
rithm has similar behavior to linear PSI, both in
the frequency bandwidth and the peak sensitivity
near one-half the camera rate [12].

D. Detector Nonlinearity

A nonlinearity of order n ≥ 2 of a detector or camera
may be defined by

ΔI ¼ qζ
��

I − q
q

�
2
−
1
2

��
I − q
q

�ðn−2Þ
; ð70Þ

Fig. 9. Measurement error in nm rms over a full cycle of phase at
633nm wavelength as a function of calibration error, for algo-
rithms based on 4, 8, and 12 camera frames per sinusoidal phase
shift cycle.

Table 1. Error in nm rms Over a Full Phase
Cycle at 633nm for 1% Random Noise

Frames Error (nm)

4 0.45
8 0.32
12 0.29

Fig. 10. Sensitivity of the 4-, 8-, and 12-frame sinusoidal PSI al-
gorithms to a 1nm vibrational amplitude. The measurement error
in nm rms over a full cycle of phase at 633nm wavelength is
plotted as a function of vibrational frequency normalized to the
camera frame rate.

Table 2. Error in nm rms Over a Full Phase Cycle at 633nm
for a 1% Detector Nonlinearity of Order n

Frames n ¼ 2 n ¼ 3 n ¼ 4

4 0.22 0.13 0.17
8 0.17 0.11 0.12
12 0.03 0.15 0.13
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where ΔI refers to the deviation with respect to a
linear fit to the detected signal I, and q is the mean
intensity. Note that ζ is the peak–valley (P–V) depar-
ture from linear over the full dynamic range of the
detector.
Detector nonlinearity is a particularly complex er-

ror source in sinusoidal PSI, generating a large spec-
trum of harmonics. Table 2 shows a significant
improvement in resistance to quadratic nonlinearity
when using the 12-frame sinusoidal PSI algorithm
compared to the 4-frame algorithm. The improve-
ment relates to constructing the algorithm so that
the filter functions Fodd, Feven are both zero at twice
the design phase shift amplitude u ¼ 2u0 (see Fig. 8).
Suppression of the cubic nonlinearity sensitivity is
also possible by suppressing Fodd, Feven at u ¼ 3u0,
using an algorithm with >12 camera frames per si-
nusoidal phase shift cycle to bring more harmonics
into the algorithm design.

E. Phase Shift Nonlinearity

A heavily loaded mechanical phase shifter or low-
voltage piezoactuator can have a nonlinear response,
leading to a distorted phase shift. Similarly to
Eq. (70), a nonlinear phase shift may be written as
a polynomial of order n ≥ 2 using

Δϕ ¼ uζ
��ϕ − hϕi

u

�
2
−
1
2

��ϕ − hϕi
u

�ðn−2Þ
; ð71Þ

where Δϕ refers to the deviation with respect to a
linear fit to the desired phase shift ϕ, hϕi is the mean
phase, u is the phase shift amplitude, and ζ is the P–
V departure from linear. The results of numerical cal-
culations for phase shift nonlinearity in Table 3 once
again show significantly improved performance with
error-compensating sinusoidal PSI.

8. Discussion and Conclusion

Sinusoidal PSI is of greatest interest when the limit-
ing hardware is the phase shift mechanism. A rele-
vant application is high-speed, continuous data
averaging with a mechanical phase shifter or any
other device with limited frequency response. The si-
nusoidal shift pattern in such a case may be prefer-

able to a sawtooth or triangular pattern that would
be required for linear phase shifting.

The error analyses in this paper serve to illustrate
the benefits of an algorithm design method for sinu-
soidal PSI based on the concept of balanced signal
harmonics as described in Section 4 and an optimi-
zation tool based on the filter functions as described
in Section 5. The results show that equivalent mea-
surement performance is achievable with sinusoidal
PSI in place of linear PSI for practical systems.

As a final note, an alternative approach described
recently by Falaggis et al. relies on sampling the in-
terference intensity during the approximately linear
portions of the sinusoidal phase shift, enabling the
use of more established linear phase shift algorithms
[13]. This alternative also offers unique advantages
for certain applications, depending on interferometer
design and on the expected error sources.
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