Optical Profiler Basics

AMETEK, Inc. Logo
Products 3D Optical Profilers Laser Interferometers Position Metrology Systems Custom Metrology Solutions Trade-in & Upgrade Program

Optical Surface Profilers ZeGage™ ZeGage™ Plus NewView™ 9000  New! Nexview™NX2  New! Nomad™ Compass™ APM650™ Mx™ Software Profiler Objectives

Optical Profiler Basics Surface Roughness Measurement Surface Profiling 3D Optical Microscopy 3D Interference Microscopy

Optical Profiler Basics

Optical Profilers - How it Works

Advantages of Optical Profilers:

Optical profiling, as opposed to stylus profiling, is non-contact.

• Optical profilers measurements are three dimensional: they measure height (the Z-axis) over an area of X and Y lateral dimensions. Stylus profilometers are inherently linear (2 dimensional). A stylus is dragged across the surface, sampling points along a line.

• Every pixel in the imaging camera is a datum: its optical path difference is calculated relative to each adjacent pixel, by comparing the contrast between them. So, the more pixels in the field of view, the more data you get in each measurement.

• Stylii wear out, or need to be changed for varying surface conditions. Optical profilers have no stylus, and no expensive 'consumable' parts to replace.

• Since reliable coupling of focus with interference contrast is essential to repeatable surface metrology, our interference microscopes come with our own athermal objectives: offering better repeatability in variable temperature environments.

Optical profilers are interference microscopes, and are used to measure height variations – such as surface roughness – on surfaces with great precision using the wavelength of light as the ruler. Optical interference profiling is a well-established method of obtaining accurate surface measurements.

Optical profiling uses the wave properties of light to compare the optical path difference between a test surface and a reference surface. Inside an optical interference profiler, a light beam is split, reflecting half the beam from a test material which is passed through the focal plane of a microscope objective, and the other half of the split beam is reflected from the reference mirror.

When the distance from the beam splitter to the reference mirror is the same distance as the beam splitter is from the test surface and the split beams are recombined, constructive and destructive interference occurs in the combined beam wherever the length of the light beams vary. This creates the light and dark bands known as interference fringes.

Since the reference mirror is of a known flatness – that is, it is as close to perfect flatness as possible – the optical path differences are due to height variances in the test surface.

This interference beam is focused into a digital camera, which sees the constructive interference areas as lighter, and the destructive interference areas as darker.

In the interference image (an "interferogram") below, each transition from light to dark represents one-half a wavelength of difference between the reference path and the test path.

If the wavelength is known, it is possible to calculate height differences across a surface, in fractions of a wave. From these height differences, a surface measurement – a 3D surface map, if you will – is obtained.

Optical Profilers Obtain Amazing
Accuracy with Interferometry

interferogram: calculating optical path differences using wavelengths
Hypothetically, if the wavelength is 500 nanometers, one could estimate the distance of slope over a full wavelength by looking at the light and dark interference bands – known as interference fringes – in an interferogram. Optical profilers calculate these differences much more accurately than is possible by visual methods.
Looking at the interferogram at right, you might notice that the light and dark bands near the bottom are not as bright or dark as the ones near the ruler marks. This is because the lower portion of the interferogram is going out of focus; out of focus means less interference. By carefully calculating the area of greatest contrast, optical profilometers determine the point that has best focus.

In practice, an optical profiler scans the material vertically. As the material in the field of view passes through the focal plane, it creates interference. Each level of height in the test material reaches optimal focus (and therefore greatest interference and contrast) at a different time. With well-calibrated optical profilers, accuracy well below a nanometer is possible. A nanometer is ten Angstroms.

In a ZYGO profilometer, each data point is monitored to determine its most precise focal point. Every pixel's height is measured relative to every other by comparing its maximum contrast (point of focus) relative to the pixels around it – producing a very sensitive surface measurement.

What is the Purpose of Optical Profiling?

Non-contact profilometers are used in many situations where micro-measurement of surface variations are essential. Industries such as optics and data storage use highly polished surfaces that are measured with interference profilometers.
  • Optics metrology is focused on lens and mirror surface finish and surface roughness, rate of curvature, and sometimes surface texture. Some binary lenses and diffraction gratings require measurements of volume, slope and radius of curvature.
  • FREE Download
    This handbook contains definitions and illustrated explanations of roughness, waviness, spacing, and hybrid parameters, more than 100 in all. Just click here or on the image below, log on, and download.
    Get your Free copy of the Surface Texture Parameters Handbook
  • Data storage surface metrology concentrates not only on surface finish roughness, but also the surface shape of the disk at the edge, and the geometry of laser-textured bumps for minimizing 'stiction' the adhesive force of the read head to the magnetized surface. Bump spacing, their alignment to a grid, peak-to-valleys, consistency, and general bump shape are measured.
  • Form & Roughness of Precision Parts – Precision machined flats, sealing surfaces, conical seats, steps and free-form shapes are all measured for wide variety of parameters. These include flatness, angle, deviation from ideal form, roughness, and microstructure.
  • Surface Finish – ZYGO profilers measure surface roughness with better than nanometer and microinch specification - well below the level of detection by the human eye or tactile sensation.
  • Step Height – ZYGO surface profilers can measure height difference between two discontinuous planes of up to 20 mm. It is also possible to measure the angle of the surfaces using this technique.
  • Dynamic Metrology – MEMS research and production requires precise surface measurement and characterization of micro-devices. ZYGO profilers provide complete MEMS metrology on a single platform - with sub-nanometer resolution.
  • Films – The top surface and film thickness data analysis capabilities enable precise measurement of various surfaces in multilayer processes. Special algorithms single out the film's top surface to measure its topography, while film thickness analyses identify the film's top surface and the substrate surface to calculate a film thickness map. These special analyses also permit topography measurement of the substrate surface.

Optical profiling can be used to measure surface finish, roughness and shape on many surfaces, so long as enough light is reflected back into the objective from the surface. Some optical profilers may be limited when it comes to measuring very high slopes, where the light is reflected away from the objective, unless the slope has enough texture to reflect light back to the objective. Fortunately, the high slope limitation has been virtually eliminated with the introduction of ZYGO's Nexview 3D Optical Surface Profiler, which is able to measure all types of surfaces, from rough to super smooth, including thin films, steep slopes, and large steps.

Optical profiling has been used to measure paper, plastic, epoxies, metals, glass, paint and ink. It is useful in analyzing the fingerprints of materials processing, such as the cumulative effects of sawing, grinding and polishing. It is useful in wear analysis, since it is able to calculate the volume of voids and scratches.

Optical profiling is used in a number of precision-engineering surface measurement situations:

  • for large step height measurement, where a stylus profiler may have difficulty reaching each step
  • where a three dimensional map of a surface is important, such as:
    • in determining the average heights of different areas
    • where sampling location selection may lead to varying results
    • where volume is a necessary parameter, such as measuring voids
    • a soft or fragile surface may be altered by contact measurements
  • where surface roughness, as opposed to linear roughness, must be known
  • in some cases, transparent films can be measured at their top and bottom surfaces

Optical profiling is quicker than stylus profiling in measuring surface areas. Areas are measured with stylus profilers with a series of parallel linear measurements. Previously, stylus profilers had an advantage of permitting long profiles, using extended stage travel. However, ZYGO optical profilers have larger fields of view and more pixels per measurement than typical optical profilers: therefore our profilers can measure longer profiles than previously possible in a single optical surface measurement acquisition.

Optical profiling is easy to use: the highly automated optical profilers are loaded with ease-of-use features that permit accurate and repeatable measurements with far less operator training.

Inquiry Form
Please use the form below to contact us with any questions you have regarding optical profilers, surface roughness metrology, or ZYGO optical profiler solutions.

First Name * Last Name *
Phone Number E-mail Address *
Company or Organization * Job Title or Function *
Street Address City
State/Province * Zip/Postal Code
Country/Region *
  Check this box to provide consent for ZYGO to contact you in the future. **
Please indicate your level of interest... *
 Current Need      Upcoming Need      Possible Need      Gathering Data
Please type your inquiry below:
* Required entries  

If you experience any difficulty submitting this form, contact:

** You may withdraw this consent at any time using the "unsubscribe" link at the bottom of any page on this web site.

By continuing to use this site, you agree to our Privacy and Cookie Policy. OK

Brochures Technical Papers
Contact ZYGO Today

Social Media Icons LinkedIn Twitter Facebook Google+ YouTube
  Privacy and Cookie Policy        Privacy Policy Inquiry Form        Unsubscribe
× Enter the email address you would like to unsubscribe from future contact...


Or, if you have a question, please use our Privacy Policy Inquiry form.