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I propose a systematic way to derive efficient, error-compensating algorithms for phase-shifting
interferometry by integer approximation of well-known data-sampling windows. The theoretical basis
of the approach is the observation that many of the common sources of phase-estimation error can be
related to the frequency-domain characteristics of the sampling window. Improving these characteris-
tics can therefore improve the overall performance of the algorithm. Analysis of a seven-frame example
algorithm demonstrates an exceptionally good resistance to first- and second-order distortions in the
phase shift and a much reduced sensitivity to low-frequency mechanical vibration.
1. Introduction

An effective means of profiling smooth surfaces inter-
ferometrically is to analyze a sequence of fringe
patterns shifted in phase with respect to each other.1,2
Phase-shift interferometry 1PSI2 is capable of high
resolution, provided that the instrument is properly
adjusted and is in a quiet environment. On the other
hand, seemingly slight errors in phase shifting can
result in significant measurement errors. Other fa-
miliar difficulties include sensitivity to vibration,
especially the low-frequency vibration common in
production environments.
It has been known for some time that the perfor-

mance of a PSI instrument is greatly affected by the
choice of the phase-demodulation algorithm.3 Until
recently, an overriding concern in surface metrology
was the amount of memory required to store camera
frames temporarily and the speed of data processing,
so the figure of merit for a PSI algorithm was its
brevity. The best PSI algorithm was therefore the
one that used the least amount of data. For many
years, themost common algorithms used only three or
four camera frames to calculate phase. Unfortu-
nately, the shortest algorithms are also the ones that
are most sensitive to intensity noise, mechanical
vibration, and errors in phase shifting. Hence the
folklore concerning optimization of these hardware-
related characterizations of the instrument.
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Improvements in computing power together with
increasing demands on performance are encouraging
instrument designers to look into PSI algorithms that
use more data points but are at the same time more
resistant to environmental problems and system er-
rors. The thesis of this paper is that many of the
problems of PSI, such as sensitivity to variations in
the data-sampling interval, are related to the fact
that many PSI algorithms use a rectangular data
window. When the data are analyzed for phase, it is
found that the result is easily corrupted by intensity
noise at frequencies far removed from the basic
modulation frequency of the interferometer. Thus
one possible way to enhance performance is to derive
new algorithms based on windowing functions that
improve the frequency response characteristics of
PSI.
The objective here is to provide a systematic means

for deriving computationally efficient PSI algorithms
that are tolerant of phase-shift errors and vibrational
noise. The foundation for the derivation is the some-
what unusual description of PSI in terms of data-
sampling windows and Fourier transforms. This
approach reveals the importance of the window and
provides a means of deriving new algorithms of
almost any length and phase increment. After de-
scribing the derivation method in general terms, I
present extensive analysis and experimental testing
of a new algorithm based on seven camera frames of
intensity data.

2. Theory

When PSI algorithms were restricted to combina-
tions of three or four intensity values, the choice of
algorithm was also restricted to those combinations
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that were reasonably independent of fringe contrast
and intensity bias. However, the number of possible
algorithms using five or more intensity values re-
quires amore systematic approach to their design and
assessment. A good algorithm should be not only
resistant to phase-shift errors but should also be
computationally efficient and relatively easy to imple-
ment with existing instrumentation.
An example of intelligent algorithm design is the

averaging method introduced by Schwider et al.4
This method compensates the effect of phase-shift
calibration error by effectively summing the results of
two consecutive measurements separated by p@2 in
phase. Currently, the most widely used PSI algo-
rithm in surface metrology is the Schwider–Hariha-
ran five-frame algorithm, which can be derived by
averaging two four-frame algorithms.4,5 A variety of
algorithms can be generated by repeated application
of p@2 averaging.6
A more recent trend in algorithm design follows

from the Fourier description introduced by Freischlad
and Koliopoulos.7 The basic idea is to picture PSI as
a filtering process in the frequency domain and to
analyze the various algorithms according to their
frequency response. Larkin and Oreb have devel-
oped a procedure for deriving a special class of
symmetrical PSI algorithms using Fourier analysis
as a guide.8 The frequency-domain picture has con-
siderable appeal, since it has the potential of provid-
ing a more general approach to algorithm develop-
ment than previous methods.
In this section I outline a general PSI theory that is

also based on Fourier analysis, with the principal
novelty being the emphasis on the use of well-known
transform windows. The central task of PSI is to
estimate the interference phase u, which is linearly
proportional to an object distance or surface height,
by inspection of a time-dependent periodic signal
g1u, t2. In a two-beam interferometer, the signal cor-
responding to a single image point in the fringe
pattern is given by

g1u, t2 5 Q51 1 V cos3u 1 f1t246, 112

whereV is the fringe visibility,Q is a constant, andf1t2
is the phase shift. Since this signal is periodic, one
way to determine phase u is to transform the signal
g1u, t2 into the frequency domain:

G1u, v2 5 e
2`

`

g1u, t2w1t2exp12i2pvt2dt. 122

Phase u can then be extracted by comparing the
imaginary and real parts of the strongest coefficient
G1u, v2 in the frequency-domain representation of the
interference signal.9,10 The window function w1t2 is
included to reduce the spectral leakage associated
with finite observation intervals. Although this is
not the usual way of describing PSI, almost any PSI
algorithm may be put in the form of Eq. 122, with the
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variety in the form of the algorithm being due
primarily to the flexibility in choice of the window
functionw1t2.
The description of PSI in terms of Eqs. 112 and 122 is

very broad and covers a great number of data acquisi-
tion and processing schemes, including pseudoran-
dom phase shifts, two-frequency heterodyne interfer-
ometry, discrete sampling, and so on. To narrow the
range of possible algorithms, let us first assume that
the phase shift is continuous and approximately
linear, so that

f1t2 < 2pv0t. 132

The Fourier transform in this case evaluates to

G1u, v2 5 Q5W1v2 1 1⁄2V 3W1v 2 v02exp1iu2

1 W1v 1 v02exp12iu246, 142

where W1v2 is the Fourier transform of the window
functionw1v02. If the window is constructed so that

W1v02 5 0, 152

W12v02 5 0, 162

then

u 5 tan211T2 1 const, 172

where

T 5
Im5G1u, v026

Re5G1u, v026
, 182

and the constant is the complex phase of the trans-
formed window at v 5 0. This is the essential result
for the hypothetical case of a continuous signal.
In practice, PSI often involves an approximation of

discrete sampling based on a sequence of a few
integrated intensity values. In a surface-measuring
instrument, each intensity sampling j corresponds to
a frame of camera data. For the discrete case, there
are a series of phase shifts fj such that

w1u, t2 5 o
j
wjd3t 2 1fj@2pv024, 192

where d3 4 is the Dirac delta function. The actual
sampling may in fact involve data integration be-
tween the sampling increments, but, for the present
purpose, the effects of this integration may be in-
cluded in the measured signal. The Fourier trans-
form of the discretely sampled intensity is

G1u, v02 5 o
j
gjwj exp12ifj2. 1102

The ratio defined in Eq. 182 becomes

T 5 o
j
sjgj/oj cjgj, 1112



where

sj 5 Im5wj exp12ifj26, 1122

cj 5 Re5wj exp12ifj26. 1132

The inverse calculation is also possible. If we know
the coefficients sj and cj, the window weightswj are

wj 5 3sj sin12fj2 1 cj cos1fj24

1 i3sj cos1fj2 2 cj sin12fj24. 1142

Equation 1142 is useful when existing algorithms are
evaluated.
The conditions in Eqs. 152 and 162 for the discrete case

reduce to familiar forms. Equation 152 is the result of
the dc term in the intensity function and is satisfied
by

o
j
sj 5 0, o

j
cj 5 0. 1152

Equation 162 requires that the leakage from the nega-
tive-frequency portion of the spectrum should go to
zero at the modulation frequency. In the discrete
case, this condition requires the simultaneous satisfac-
tion of the following two equations:

o
j
sj sin12fj2 5 o

j
cj cos1fj2, 1162

o
j
sj cos1fj2 5 2o

j
cj sin12fj2. 1172

Further simplifications are possible for the special
case of a symmetric, real window function w1t2. For
this special case,

sj 5 wj sin12fj2, 1182

cj 5 wj cos1fj2. 1192

Although the general formalism provided here is not
limited to real, symmetric windows, it turns out that
this is a useful class of algorithms.

3. Algorithm Design

Poor performance in PSI can most often be traced to
problems in satisfying Eqs. 152 and 162 in various
situations that deviate from the ideal case.11 When
Eqs. 152 and 162 are not completely satisfied, the
additional terms in Eq. 142 arising from the dc bias
and the negative-frequency Fourier signal contribute
to measured phase. In particular, when W12v02 fi 0
there will be a periodic error at two times the
modulation frequency of the phase shift. Thus in a
well-designed algorithm, the Fourier transform W1v2
of the window function should be close to zero over as
large a range as possible, especially in the neighbor-
hood of v 5 2v0. From these observations we can
conclude that one way to enhance the performance of
PSI is to use windowing concepts to adjust the
graphic appearance ofW1v2.
The digital filtering and signal processing literature
provides a wide variety of data windows for improving
frequency and phase estimation.12,13 Generally these
windows are real and symmetric and are designed to
reduce the amount of high-frequency ripple in the
Fourier transform, at the expense of a somewhat
broadened sensitivity around v 5 0. Consider, for
example, the two windows and their Fourier trans-
forms shown in Figs. 112 and 122. The first window is
a simple rectangular function that represents a uni-
form data sampling over a range of phase shifts.
The Fourier transform of this window exhibits the
appropriate zero points at v 5 v0 and v 5 2v0, but
there are strong derivatives in the neighborhoods of
these points. A PSI algorithm based on this window
would be sensitive to changes in the modulation
frequency and to low-frequency intensity noise. On

Fig. 1. Comparison of two data-sampling windows. The time
scale is normalized to the period of the fundamental phase-shift
frequency v0. As the number of data samples increases, it be-
comes increasingly more practical to design integer-math PSI
algorithms that approximate a Von Hann window.

Fig. 2. Positive-frequency portions of the Fourier transforms of
the windows shown in Fig. 1. The frequency-space graph shows
rapid variations around v 5 2v0 for the rectangular window, which
in practice results in high sensitivity to phase-shift errors. The
transform of the Von Hann window, on the other hand, is relatively
flat in the neighborhood of v 5 2v0, resulting in improved perfor-
mance.
1 August 1995 @ Vol. 34, No. 22 @ APPLIED OPTICS 4725



the other hand, the window shown in Fig. 2 has much
better behavior in the frequency domain, particularly
in the neighborhood of v 52v0.
The nonrectangular window shown in Fig. 1 is

commonly known as a raised cosine or Von Hann
window, and it has the functional form

wj 5 0.5 1 0.5 cos32p

P8 1 j 2
P

224 , 1202

where P is the number of data samples, j 5 0 . . . P 2
1, and P8 is the window width. From basic notions of
the discrete Fourier transform we know that the
effective length of the data sample is of critical
importance. Generally it is desirable to have the
sample length be an integermultiple of the fundamen-
tal signal period, so that, at least in the ideal case, the
signal will project into a single frequency of the
spectrum. This condition is satisfied for the exact
form of the window by

P8 5 N
2p

a
, 1212

whereN is an integer and a is the phase increment.
An exact representation of this window requires

that P 5 P8 2 1 and most likely the manipulation of
noninteger or even irrational numbers. However,
from a computational point of view, it is desirable to
work with integer coefficients sj and cj. This imposes
an approximation to the ideal case, represented by
the formulas

sj 5 round3Xwj sin12fj24, 1222

cj 5 round3Xwj cos1fj24, 1232

where round3 4 is a function that returns the nearest
integer to its argument, and X is chosen to provide a
good approximation of the window. The necessary
4726 APPLIED OPTICS @ Vol. 34, No. 22 @ 1 August 1995
phase shifts are

fj 5 1 j 2
P 2 1

2 2a, 1242

where P # P8 2 1 is the number of nontrivial data
samples required for Eqs. 1222 and 1232. When select-
ing a suitable scaling factor, it is important to verify
by direct computation that Eqs. 152 and 162 are satis-
fied.
Some example algorithms derived from an integer

approximation to the Von Hann window are shown in
Table 1. These examples are found by a simple
computer search for scaling values X such that there
is a good fit to the exact window while at the same
time the coefficients satisfy Eqs. 1152 and 1162. Four of
the examples are based on a p@2 phase increment,
which is the most widely used in PSI systems. The
three other examples have 2p@3, p@3, and p@4 phase
increments to illustrate that themethod is not limited
to any particular phase-shift procedure. It is worth-
while noting that it is possible to have computation-
ally efficient integer-math algorithms even when the
phase increment is not equal to p@2.
It is also possible to recast the Schwider p@2

averaging technique4 in terms of data-sampling win-
dows and obtain many of the same results. Given a
set of P window coefficients wj satisfying Eqs. 152 and
162 for a p@2 phase increment, an improved window w̃j
having P 1 1 weights can be constructed from

w̃j 5 wj 1 wj21, 1252

where j5 0 . . . P andwj 5 0 outside the range of 0 . . .
P 2 1. A simple four-frame algorithm, for example,
has the square window wj 5 1 for j 5 0 . . . 3. A
five-frame window calculated from Eq. 1252 has coeffi-
cients w̃0 5 w̃4 5 1 and w̃1 5 w̃2 5 w̃3 5 2, which in fact
is the data-sampling window for the Schwider–
Hariharan five-frame algorithm referred to in Section
Table 1. Examples of Algorithms Derived from an Integer Approximation to the Von Hann Window

P P8 a X T

5 8 p@2 2
21g2 2 g42

21g1 1 g52 1 2g3

6 8 p@2 6
21g0 2 g52 2 31g1 1 g42 1 41g2 2 g32

21g0 1 g52 1 31g1 2 g42 1 41g2 1 g32

7 8 p@2 8
21g0 2 g62 1 71g2 2 g42

241g1 1 g52 1 8g3

11 12 p@2 16
1g0 2 g102 2 81g2 2 g82 1 151g4 2 g62

41g1 1 g92 2 121g3 1 g72 1 16g5

8 9 2p@3 20
21g0 2 g72 2 71g1 2 g62 1 171g3 2 g42

1g0 1 g72 1 41g1 1 g62 2 151g2 1 g52 1 101g3 1 g42

8 12 p@3 2.7
2g0 1 g1 1 g3 2 g4 2 g6 1 g7 1 21g2 2 g52

21g0 1 g1 1 g6 1 g72 1 21g3 1 g42

9 16 p@4 2
g1 1 g3 2 g5 2 g7 1 21g2 2 g62

2g0 2 g1 1 g3 1 g5 2 g7 2 g8 1 2g4



2. Successive application of Eq. 1252 also leads to the
P 5 5, 6, 7 examples for a 5 p@2 in Table 1.
As a final note, it should be clear that multiplying

the window by an overall complex constant of unit
magnitude does not change the fundamental proper-
ties of the window in the frequency domain but simply
introduces an asymmetry in the data-sampling that is
equivalent to adding a constant phase offset to the
data shifts fj in Eq. 1242. This means that we are free
to include such a phase shift in order to simplify the
final appearance of the algorithm. For example, by
multiplying the Von Hann window by exp12ip@42 and
using an integer approximation to Eqs. 1122 and 1132,
the P 5 6 algorithm in Table 1 simplifies to

T 5
3g1 2 4g3 1 g5

2g0 1 4g2 2 3g4
. 1262

Apart from the p@4 phase shift, this asymmetric P5 6
algorithm has the identical data-sampling window as
the symmetric version and has the same dynamic
response.

4. Seven-Frame Algorithm

From the point of view of insensitivity to phase-shift
errors, vibration, and intensity noise, the best algo-
rithms overall are typically those that have the
closest fit to an exact analytical window. Various
criteria can be established for determining the good-
ness of fit, but, as a rule of thumb, we should expect
that the best algorithms will have a number P of
nontrivial data samples close to the window width P8.
Looking at Table 1, it can be seen that there is a
progressively better fit to the P8 5 8 Von Hann
window as the number of data samples P increases
from 5 to 7. Thus we should expect that the P 5 7
will provide the best approximation to the analytical
window. In this section, I compare the relative per-
formance of the seven-frame algorithm with that of
the five-frame algorithm, using assessment tech-
niques independent of the window theory.
The seven-frame algorithm in Table 1 determines

interferometric phase u using

u 5 tan211T2, 1272

where

T 5
71g2 2 g42 2 1g0 2 g62

241g1 1 g52 1 8g3
. 1282

The intensity values gj correspond to phase shifts
given by

wj 5 1 j 2 321p@22, 1292

where j 5 0 . . . 7. Computationally, the seven-
frame algorithm has much in common with the Sch-
wider–Hariharan five-frame algorithm, which ap-
pears in Table 1 as the P 5 5 approximation to the
same window function. The difference between the
five- and seven-frame algorithms is the extra term
1g0 2 g62 and some overall scaling factors. These
small differences have a significant effect on the
resulting performance.
The most important benefits of the seven-frame

algorithm are excellent resistance to distortions in
the phase shift, and reduced sensitivity to low-
frequency mechanical vibration. The effect of phase-
shift errors will be considered first. Suppose that
instead of uniform, equidistant phase shifts as in Eq.
1292, we instead have

wj 5 3p2 2 e 1 1 j 2 32g41 j 2 32, 1302

where e and g are first- and second-order distortion
coefficients, respectively. The first-order distortion
could be due to a calibration error in the phase shift,
and the second-order distortion is common in both
the motion of piezoelectric transducer 1PZT2 actua-
tors and the wavelength-tuning response of laser
diodes.
The effect of a distorted phase shift of this kind can

be predicted to good accuracy by inserting Eq. 1302 into
Eq. 1282, propagating the error through Eq. 1272, and
expressing the result as a Taylor series expansion for
small e and g. This procedure leads to the following
analytical expression for the phase error Du for the
seven-frame algorithm in the presence of distortions
in the phase shift:

Duseven 5 2g 2 13g2@42sin12u2 1 1e4@162sin12u2 1 · · ·.

1312

Note that, for simplicity, the cross terms between the
two error sources are not shown in Eq. 1312. For
comparison, it is useful to perform the same analysis
with the five-frame algorithm. The result for this
case is

Dufive 5 3g@2 2 1g@22cos12u2 1 1e2@42sin12u2 1 · · ·.

1322

The important difference between these results is
that the terms periodic in 2u have a smaller ampli-
tude for the new seven-frame algorithm when com-
pared with the five-frame algorithm.
The effect of a first-order distortion is shown graphi-

cally in Fig. 3. The horizontal axis is the relative
calibration error and is equal to the ratio of e to p@2,
the nominal shift increment. The vertical axis is the
predicted P–V error resulting from the oscillatory
terms in Eqs. 1312 and 1322. The phase measurement
error is effectively eliminated with the new algorithm.
This insensitivity to overall phase-shift calibration
can be important in fast spherical cavities, even with
a perfectly calibrated phase-shifting device.12,14
The effect of second-order distortions in the phase

shift is shown graphically in Fig. 4. The horizontal
axis is the amount of quadratic nonlinearity, defined
1 August 1995 @ Vol. 34, No. 22 @ APPLIED OPTICS 4727



here as the ratio of g to p@2. From this graph it is
clear that, with conventional PSI algorithms, nonlin-
earities can contribute significant errors to the phase
measurement. The reduced sensitivity to quadratic
nonlinearities makes it possible to use inherently
nonlinear phase-shift devices, such as low-voltage
PZT actuators and tunable laser diodes, without loss
of accuracy.15
Many high-quality interferometric instruments

have linear, well-calibrated phase shifts and there
may appear to be little benefit in using algorithms
that require more data frames. However, even in the
case of a well-calibrated instrument, there can be
environmental factors that degrade the system accu-

Fig. 3. Theoretical P–V surface measurement error in PSI that is
due to miscalibration of the phase shift. The graph compares
the seven-frame algorithm in Table 1 with the Schwider–
Hariharan five-frame algorithm for an illumination wavelength of
600 nm. An arbitrary offset of 0.3 nm has been added to both
curves.

Fig. 4. Theoretical P–V surface measurement error in PSI that is
due to quadratic nonlinearities in the phase shift. The graph
compares the seven- and five-frame algorithms for an illumination
wavelength of 600 nm.
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racy. Perhaps the most significant of these is vibra-
tion. Small-amplitude vibrations during a measure-
ment result in phase-measurement errors Du
composed principally of an offset constant over the
field of view and an additional term periodic in 2u.
Recent research has shown that the sensitivity to

vibration is closely related to the type of PSI algo-
rithm, and this vibrational sensitivity can be pre-
dicted in detail using a linear approximation and
Fourier transform methods.16–18 The Fourier ap-
proach is a relatively straightforward way to evaluate
analytically the new algorithm for sensitivity to vibra-
tion. Suppose, for example, that we have a single
vibrational tone of frequency v and amplitude A0.
Using the formalism developed in Refs. 17 and 18, we
find that the rms expectations of the resulting peri-
odic phase error for the five- and seven-frame algo-
rithms are

Eseven 5 A00cos1vp@22sin21vp@42
2

1
cos13vp@22 2 cos1vp@22

32 0 , 1332

Efive 5 A00cos1vp@22sin21vp@42
2 0 . 1342

Equations 1332 and 1342 are plotted in Fig. 5. These
curves are drawn as a function of the vibrational
frequency for a camera frame rate of 60 Hz. The
vibrational sensitivity plotted in Fig. 5 is nearly the
same for the two algorithms at frequencies of 30 and
90 Hz. However, between these frequencies and
particularly in the low-frequency region there are
significant differences. The new algorithm dramati-
cally improves the low-frequency behavior. Low-
frequency vibrations correspond to gentle air cur-

Fig. 5. Theoretical rms surface measurement error in PSI that is
due to mechanical vibration during the measurement. The graph
compares the sensitivity of the seven- and five-frame algorithms as
a function of vibrational frequency. An arbitrary offset of 0.11 nm
has been added to both curves.



Fig. 6. Experimental P–V surface measurement error in PSI that
is due to a deliberate miscalibration of the phase shift. These
data were obtained with a white-light interferometric microscope
and a mean illumination wavelength of 600 nm. Compare with
Fig. 3.

Fig. 7. Experimental surface maps of residual errors when an
interferometric microscope was subjected to a 1-Hz vibration
having an amplitude equivalent to one-quarter fringe. There
were approximately three fringes in the field of view, and the
camera frame rate was 25 Hz. The seven-frame algorithm has a
greater resistance to low-frequency vibrations than the five-frame
algorithm.
rents, air-table oscillations, thermal distortions, and
floor motion. Vibration is a serious problem in all
interferometers, especially large aperture instru-
ments.
The improvement in vibration sensitivity may be

understood qualitatively by thinking of low-frequency
vibrations as phase-shift calibration errors. Gener-
ally, an error-compensating algorithm should perform
well against this kind of environmental disturbance,
and in fact the Schwider five-frame algorithm is
already much better than three- and four-frame algo-
rithms. However, this qualitative analogy should
not be relied on completely, since it is possible to
design an algorithm that performs well in the face of
calibration errors but overall has poor resistance to
vibration.
Experiments with an interferometric microscope

have verified the predicted advantages of the new
algorithm. Figure 6 shows the experimental varia-
tion in P–V system repeatability as a function of
calibration error. The repeatability refers to two
successive measurements of a smooth, flat part, then
calculating the P–V of the difference map. The two
measurements are taken at a phase interval of p@2 in
order to isolate the effect of the periodic terms. The
experimental data confirm the benefits predicted in
Fig. 3. To demonstrate the improved resistance to
low-frequency vibration, the microscope has been
equipped with two different PZT translators. The
first PZT provides the conventional phase-shift ramp,
whereas the second introduces additional mechanical
vibrations controlled by a waveform generator. Fig-
ure 7 shows the results of this test for a 1-Hz
vibration, having an amplitude equivalent to one-
quarter fringe, using a 25-Hz CCD camera. The
seven-frame result is clearly much improved when
compared with that of the five-frame algorithm.

5. Conclusion

The theoretical analysis together with experimental
work demonstrates the advantages of the new seven-
frame algorithm. However, it is expected from the
general approach to the derivation of the algorithm
that the advantages presented here are not peculiar
to the specific number of frames but are rather a
general characteristic of PSI algorithms that reason-
ably approximate a window function designed to
reduce leakage in the frequency domain. Thus the
same principles can be applied to the derivation of a
number of different algorithms of different sizes, with
the symmetric seven-frame example representing a
good compromise between performance and comput-
ing requirements. It is also worth noting that the
Von Hann window was chosen for this study because
it is relatively easy to calculate. More complicated
windows can provide even better performance.

I acknowledge the support of the software engi-
neers here at Zygo in the implementation and testing
of the new algorithm. In particular, I thank Toni-
Lynn Miles for performing the difficult experiments
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that led to Figs. 6 and 7. These experiments require
the accurate measurement of small residual errors in
data plots and require skill and patience to perform.
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