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INTRODUCTION 

Phase shifting interferometry (PSI) is one of the more common techniques for interpolation 

between interference fringes. A surface-profiling PSI instrument stores CCD image frames of 

fringe patterns for a series of reference phases; then applies a mathematical algorithm to recover 

phase information.1  Because the wavefront phase itself is a linear function of the surface profile, 

PSI provides a high-resolution measurement of the surface figure. 

In the early days, computational limits restricted the number of image frames to three or four, 

which does not leave much room for variation.  As demands for precision have increased, so have 

the length and variety of phase-shifting algorithms.  The state of the art has advanced to 5, 7 and 

even 15 frame varieties.  At the same time, the level of sophistication in deriving these algorithms 

has risen dramatically.2,3,4  This paper explores the limits of these trends, while reviewing some of 

the mathematical techniques that we at Zygo use to analyze PSI performance.  Finally, in an 

attempt to predict far into the future, I present a 101-frame algorithm that is highly resistant to 

error sources.  This somewhat extreme example highlights the practical limits on algorithm length, 

which are actually more relaxed than one might think, provided that we loosen the definition of 

PSI.   

FUNDAMENTALS OF PSI  

Estimation of a wavefront phase θ in PSI requires N ≥ 3 interference images or camera 

frames, each having a different phase offset φ j , where j N= −0 1.. . For practical reasons and 

for ease in the data processing, the phase shifts φ j  are typically linear in time and have a 

constant phase increment α0 .  For a given pixel in the field of view, the intensity samples are 

 

( )[ ]g Q Vj j= + +1 cos θ φ , (1.) 

 

where V  is the fringe visibility, Q is a constant and 
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( )φ αj j j= − 0 0 .  (2.) 

 

PSI algorithms for calculating the phase θ  are of the form 

 

θ =










 +− ∑

∑
tan .1 s g

c g
const

j j

j j
, (3.) 

 

where s j  and c j  are constant coefficients.  For example, a popular algorithm using an α π0 2=  

phase step is the five-frame Schwider-Hariharan algorithm:5,6 

 

θ =
−

− +









−tan

( )

( )
1 1 3

2 0 4

2

2

g g

g g g
. (4.) 

 

The non-zero coefficients in this case are s1 2= ,  s3 2= − ,  c0 1= − ,  c2 2=  and c4 1= − .   

SAMPLING WINDOW MODEL  

PSI processing can be interpreted as a discrete Fourier transform (DFT)7 combined with a 

data sampling window.8  From the DFT point of view, the phase θ is calculated from the argument 

of the Fourier Transform G of the intensity signal g,  where G  is given by 

 

( )G g w ij
j

j j= −∑ exp φ . (5.) 

 

The weighting values w j  correspond to the sampling window.  An important class of algorithms 

employs real, symmetric windows, for which the algorithm coefficients work out to be 
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( )s wj j j= −sin φ  (6.) 

 

( )c wj j j= cos φ . (7.) 

 

For the Schwider-Hariharan PSI algorithm, 

w w w1 2 3 2= = =  and w w0 4 1= = .  

Table 1 below includes several additional 

examples. 

The sampling-window model provides a 

means of deriving new algorithms as well as an 

insight into error sources. Error-compensating 

algorithms are approximately bell-shaped when 

represented graphically (Figure 1).9  Such a window reduces the effects of negative-frequency 

leakage in the Fourier domain.  The practical consequence is that these algorithms are more 

robust in the presence of phase-shift calibration errors and mechanical vibrations.  

Table 1:  PSI algorithms having real, symmetric data sampling windows 

N w tan-1(θ) 

4 [ 1, 1, 1, 1 ] g g

g g
0 2

3 1

−

−
 

5 [ 1, 2, 2, 2, 1 ] 2

2
1 3

0 4 2

( )

( )

g g

g g g

−

− + +
 

7 [ 1, 4, 7, 8, 7, 4,1 ] − − + −

− ⋅ + + ⋅

( ) ( )
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g g g g

g g g
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11 [ 1, 4, 8, 12, 15, 16, 15,… ] ( ) ( ) ( )

( ) ( )

g g g g g g

g g g g g
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8 15
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Figure 1: Sampling windows for PSI algorithms 

having 5 to 15 frames. 
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RESISTANCE TO CALIBRATION ERRORS 

Since PSI algorithms are designed for specific phase increments, they cannot be expected to 

perform perfectly if the increment is incorrect.  Suppose that instead of the assumed phase shifts 

α0  as in Eq.(2.), we have 

 

( )α ε α= −1 0 , (8.) 

 

where α  is the actual phase increment and ε  is the calibration error.  The calibration error ε  is a 

function of a number of different experimental parameters, some of which cannot be controlled or 

entirely eliminated by calibration procedures.  These parameters include tilting or twisting of the 

PZT pusher during translation, and geometrical effects that arise when working with fast spherical 

cavities. 

Using the window model, it is possible to derive an exact, analytical formula for the peak-to-

valley (PV) error resulting from calibration errors.10  The result is 

 

( ) ( )

( ) ( )
E ε

ε

ε ε
=

−
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. (9.) 

 

where  
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 (11.) 

 

and 
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( ) ( )W w ij j
j

α φ α α= −∑ exp 0  (12.) 

  

is the Fourier transform of the data sampling 

window w.  Eq.(9) is an exact formula for the  

P-V error, valid for all PSI algorithms having the 

form of Eq.(3).  

It turns out that the effect of calibration 

errors is strongly dependent upon the choice of 

algorithm.  It appears from Figure 2 that a  

well-constructed algorithm with a large number 

of sample frames can eliminate calibration error 

as a source of concern.   

VIBRATION  

Of course, phase step calibration is not the only source of error.  During a PSI acquisition, 

mechanical vibrations n t( )  disturb the phase shifts and add noise to the intensity signal.  One 

way to analyze the resultant errors is to consider the effect of pure vibrational tones of frequency 

ν , amplitude A and phase offset α .  In that case,  

 

( )n t A t( ) cos= +2πν α . (13.) 

 

It is possible to calculate the error for these pure tones analytically, in a linear approximation.11  

For a real, symmetric data sampling window w, the calculation involves the following transforms: 

 

( ) ( )

( ) ( )

F
q

w i

F
q

w i

S j j j
j

C j j j
j

( ) sin exp

( ) cos exp

ν φ φ ν

ν φ φ ν

= − −

= −

∑

∑

1

1
 (14.) 

 

where 
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Figure 2: Phase-step calibration errors for the 

4,5,7 and 15-frame algorithms listed in Table 1. 
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( ) ( )q w wj j
j

j j
j

= ∑ ∑=sin cos2 2φ φ  (15.) 

 

Then the rms error for vibrations of random phase is then12  

  

[ ] [ ]′ = + + − − − + +E
A

i F F F FS C S C( ) ( ) ( ) ( ) ( )* * * *ν ν ν ν ν
2

8
1 1 1 1 .  (16.) 

 

The frequency ν is normalized to the data acquisition rate ν0, which for π 2 algorithms is 1/4 the 

camera rate.  

Figure 2 shows the vibrational response 

for the 3-, 7- and 15-frame algorithms.  The 

smaller the area under the curve, the better, 

particularly in the low-frequency region.  

There is once again a clear improvement 

with increased frame number. With fifteen 

frames, there is zero sensitivity to small 

vibrations (< tenth fringe) up to a normalized 

frequency of 1.2.  For a  

60-Hz CCD camera, this corresponds 

vibration immunity up to 18Hz.  Large 

amplitude vibrations generate a somewhat 

different response, although the same 

improvement trend with algorithm size is 

preserved.13 

THE ULTIMATE, 101 FRAME ALGORITHM? 

There are many other sources of error that can be quantified with the window model and 

Fourier analysis.  These include random intensity noise, nonlinear phase shifts, harmonic signal 

noise and so on.  For all of these error sources, there is a common, clear trend: the larger the 

number of CCD frames, the easier it is to suppress errors.  Given enough computing power, it 

should be practical to store and process dozens of computer frames each having a million pixels.   
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Figure 3: Phase-measurement errors for the 5,7 and 

15-frame algorithms, for a vibrational amplitude 

equivalent to 0.1 rad. 
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So why not speculate about a really big algorithm, having, say, 101 frames?  It is easy enough 

to derive such an algorithm using the sampling window concept.  An appropriate  

101-coefficient symmetric window is 

 

w = [  1 3 7 12 19 27 37 48 60 74 88

 104 122 140 159 179 200 222 244 267 291 314

 339 363 388 412 437 461 486 509 533 556 578

 600 621 641 660 678 696 712 726 740 752 763

 773 781 788 793 797 799 800 799 ,,, ] 

 

This window, together with a standard DFT 

as described in previous sections, provides 

a very high resistance to errors.  For 

example, the small-amplitude vibration 

sensitivity for the “101” is reduced to a very 

small frequency region (Figure 4).  The 

algorithm is virtually insensitive to vibration.   

In spite of these positive results, the 

practicality of very long PSI algorithms is in 

doubt.  For one thing, the phase-shifting 

mechanism must be able to cope with a 

phase range of several hundred radians.  

Furthermore, interference microscopes that 

employ PSI often have a coherence depth 

that is too short for a 101-frame algorithm.  

There is even a more fundamental problem with very long PSI, related to the uniformity and 

calibration of the phase shift.  This becomes evident when calculating the effective fringe contrast 

or signal strength as a function of calibration error.  It can be shown that the signal strength ′V  is 

given by the formula  

 

( ) ( )′ =V Vε εW0  (17.) 

 

where W0  was defined in Eq.(10), and V is the fringe contrast.  Figure 5 compares the signal 

strength for three different algorithms, including the 101, for V=1.  The 101-frame algorithm is 
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Figure 4: Phase-measurement errors for the  

101-frame algorithm, for a vibrational amplitude 

equivalent to 0.1 rad.  Compare with Fig.3. 
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obviously severely constrained.  This makes 

very long PSI algorithms such as this one 

quite fragile.  Thus, in spite of my hopes of 

deriving the ultimate algorithm, I think we 

will be doing PSI with fewer than 101 frames 

for quite a while. 

LONG-SCAN PSI THAT WORKS 

In light of these difficulties, it may come 

as a surprise that very large PSI algorithms 

are already in use.  A known form of 

measuring microscope employs white light 

and frequency-domain analysis (FDA).14  An 

FDA instrument collects 64 frames of 

interferograms during a continuous phase 

shift, generated by mechanical translation of 

an Mirau objective.  These interference data 

are transformed pixel-by-pixel into the 

spatial frequency domain by Fourier 

analysis.  The transform is equivalent to 

applying a half-dozen, 64-frame PSI 

algorithms to each pixel.  

The loss of signal strength is not an 

issue in FDA with its 64-frame analysis, 

because there is no a priori assumption 

regarding the size of the phase increment 

α0 . The Fourier transform in FDA covers a 

range of spatial frequencies corresponding 

to a range of phase increments.  One of these frequencies always has a high signal strength, and 

this is the frequency used for the final phase analysis.  To provide the range of spatial 

frequencies, the instrument operates with broad-band illumination, i.e. white light.  The white-light 

fringes shown in Figure 6 have the characteristic that they are already modulated by what 

amounts to a data-sampling window, also known as the coherence envelope.  Thus the individual 

PSI algorithms for each spatial frequency are particularly simple: they are bundled together into an 

ordinary Fast Fourier Transform.  The FDA technique enjoys all of the advantages of error 

reduction characteristic of long-scan PSI, without the constraint of precise calibration.  
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Figure 5: Decline in signal strength with calibration 

error for the 7,15 and 101--frame algorithms.  The 

101 requires precise calibration to maintain high 

signal strength. 
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Figure 6: Frequency-domain analysis of white-light 

fringes such as these may be considered a special 

form of long-scan PSI.  This kind of PSI is in 

widespread use today. 
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CONCLUSION 

The art of PSI has matured greatly in the past few years, and we now have much greater 

flexibility in the size and shape of phase-estimation algorithm.  One direction for further research 

is in very long algorithms, to reduce sensitivity to a variety of error sources.  However, such 

algorithms, although easily derived, must contend with the fundamental limits of coherence and 

calibration.   

I have successfully derived a 101-frame algorithm of the conventional type, and have 

calculated the improvement in error resistance. I have also shown that a very-long PSI algorithm it 

is not very practical.  However, it is noteworthy that long-scan PSI with white-light illumination is 

not only feasible, but in fact has been a commercial product for several years.15  For the special 

case of white-light interferometry, Frequency-domain analysis of the interference pattern provides 

a kind of adaptive data processing that breaks through the length barrier of conventional PSI 

algorithms.  Perhaps in the near future, a more general type of PSI instrument could be designed 

that maintains these benefits without restricting the system to white light.    
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