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ABSTRACT 

An alternative to the conventional linear phase shift in optical testing interferometers is a sinusoidal phase shift, which 
has the benefit of relaxing requirements on the phase-shifting mechanism.  We propose error-compensating phase-
demodulation algorithms and provide a new, comprehensive sensitivity analyses to random noise, nonlinearity, 
vibrations and calibration error to demonstrate that sinusoidal phase shifting can be as robust and computationally 
efficient as the more established linear phase-shift techniques.  
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1. INTRODUCTION 
Optical surface profilers such as the familiar laser Fizeau interferometer sketched in Figure 1 measure surface heights 
from an estimation of the phase profile of the wavefront reflected from the object surface.  

In phase shifting interferometry or PSI, several patterns are acquired in sequence during a controlled overall phase shift 
to facilitate the phase estimation.  By far the most common method of PSI involves a linear phase shift, which generates 
an oscillating intensity signal with a carrier frequency proportional to the phase shifting rate.  The phase of this carrier is 
the phase that we seek.  The importance of PSI techniques and their >20-year history for gold-standard metrology has 
led to highly-refined techniques and hundreds of papers on error analysis and PSI algorithm design [1].   

The linear phase shift nonetheless presents some challenges and limitations, particularly with regard to the phase shifting 
mechanism.  Mechanical shifting is the most common method, using piezo-electric actuators or the like, driving optical 
sub assemblies that can weigh several pounds or more. Because these actuators have limited range, they can maintain the 
phase shift for just a few interference intensity cycles before reversing direction.  

 
 
 

Figure 1: Laser Fizeau interferometer for optical testing, with mechanical phase shifting. 
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Conventional linear phase shifting places high demands on the phase shifting mechanism, which must execute a linear 
motion, reverse direction, setup and repeat for the next measurement (Figure 2).  This motion can be difficult to for a 
mechanical system while maintaining fidelity in the linear ramp, particularly if it is heavily loaded.  One can readily 
imagine a triangular phase shift pattern or perhaps with rounded edges at the turnaround points to improve the situation. 
Best of all would be a purely sinusoidal phase shift, as in Figure 3.  This more natural reciprocal motion is friendlier to 
mechanical systems and other methods of phase shifting that more easily support a single-frequency oscillatory motion.  

Recognizing the advantage of a sinusoidal phase shift, Sasaki began a study of the technique in the 1980’s, and 
introduced a four-frame demodulation algorithm having the same basic form as the linear four-frame algorithm popular 
at the time [2].  He went on to perform a random-noise error analysis [3] and to describe a sinusoidal Fizeau [4].  Over 
the years, several Researchers have proposed instruments based on sinusoidal phase shifting, without however 
dethroning the dominant linear techniques. With notable exceptions [5][6],there are few papers on sinusoidal phase 
shifting outside of Sasaki’s Group, and commercial PSI systems rely exclusively on linear scans.  Possible explanations 
include improvements in modulator design as well as significant advances in error-compensating linear PSI algorithms. 

The primary goal of this document is to demonstrate that sinusoidal PSI or SinPSI can be as robust and computationally 
efficient as modern linear PSI.  To this end, we provide new error-compensating SinPSI algorithms and the results of a 
new, comprehensive error analysis to close the gap between sinusoidal and linear PSI.  The intent is to provide greater 
flexibility in methods of phase shifting in instrument design. 

For brevity, this conference proceedings paper provides only the results of the mathematical development leading to the 
algorithms and error analysis. The derivations will be provided in an archival journal article to be published separately. 

2. PHASE-SHIFTED INTERFERENCE SIGNAL
The central task of PSI is to determine a height h  from the interference phase  
 

4 hθ = π λ   (1) 
 
at multiple positions in the field of view by evaluation of the interference intensity  

 

( ) ( ){ }, 1 cosI t q V tθ = + θ+ φ⎡ ⎤⎣ ⎦ . (2) 

 

 
Figure 3: Continuous sinusoidal phase shifting. 

 
Figure 2: Common linear phase shift pattern for 

two successive measurements. 



 
 

 
 

To enable an accurate evaluation for unknown fringe visibility V  and average intensity q , PSI prescribes a sequence of 

intensities 1,2,3...I  recorded over time t  while shifting an offset phase ( )tφ .  In traditional PSI, the phase shift is linear 

and generates a single-frequency tone having the phase offset θ  that we seek.  As examples, the following widely-used 
4- and 5-frame algorithms use a phase shift increment of 2π : 
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while the following 13-frame algorithm uses a frame increment of 4π : 
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For SinPSI, we define the phase shift (Figure 3) as a cosine of amplitude u : 

  

( ) ( )cost u tφ = α⎡ ⎤⎣ ⎦ . (6) 

 
The linear, time-dependent phase of the shift is ( ) 2t ftα = π  where f is the frequency e.g. in Hz.  The time 
dependence for α  will be implicit in all of the equations that follow. 

 
Figure 5: Strength of even (solid lines) and odd 

(dashed lines) harmonics in the SinPSI signal. 

 
Figure 4: Interference intensity pattern for the 

sinusoidal phase shift shown in Figure 3. 



 
 

 
 

 

The mathematical consequence of the sinusoidal phase shift of Eq.(6) is an expansion of Eq.(2) to a sum of harmonics 
(Figure 4 and Figure 5) weighted by Bessel functions Jν : 

 
( ) ( ) ( ) ( ) ( ) ( ), cos sinI qD qV C qV Sθ α = θ + θ α + θ α  (7) 

 
where 
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The phases of these harmonics are independent of the interference phase, thus unlike linear phase shifting, we do not 
determine θ  by a Fourier phase analysis.   Rather, in SinPSI, we note that the strengths of the odd harmonics ( )S α  are 

proportional to the sine ofθ  and the strengths of the even harmonics ( )C α  are proportional to the cosine ofθ .  

Comparing the relative strengths of the odd and even harmonics provides quadrature values forθ . 

3. SinPSI ALGORITHM DESIGN

Let us define a sequence of P phases jα  of the sinusoidal phase shift starting at an offset phase ϕ and spaced byΔα : 

 
 j jα = Δα+ϕ  (11) 

 

0,1,2.. 1j P= − . (12) 
 
The corresponding intensities form a vector jI .  Now define algorithm vectors ( )odd jh , ( )even jh  such that the dot 

product of these vectors and the intensities jI  tells us the strength of the odd and even harmonics, respectively:  
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A detailed analysis shows that the constant normalizing factors in Eq.(13) are 
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where 
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and where the effect of camera frame integration is 
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As shown in Eq.(13), SinPSI algorithms are similar in form to that of linear PSI algorithms—i.e., the arctangent of the 
ratio of a weighted sum of intensity values acquired sequentially during the phase shift.  However, the principles of good 
algorithm design differ significantly from conventional linear phase shifting and established optimization techniques do 
not apply.  Good SinPSI algorithm design centers on developing coefficient vectors that keep the ratio of the 
normalization constants in Eq.(14) and Eq.(15)  stable in the presence of disturbances such as errors in the phase shift 
excursion.  In part this involves constructing coefficient vectors so that if one of the harmonics is altered by a 
disturbance it is naturally balanced by an opposing change in another harmonic.7   

4. EXAMPLE SinPSI ALGORITHMS
As a point of reference, we present a first example SinPSI algorithm similar to that of Sasaki, and having the merit of 
requiring only 4 camera frames of intensity data.  This algorithm has a phase increment 2Δα = π , a starting offset 

phase 0ϕ = , and a nominal phase shift amplitude 2.45u = : 
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The 4-frame algorithm does not fall in the class of error-compensating algorithms because the normalization ratio 

even oddΓ Γ calculated from Eq.(14) and Eq.(15) is unstable with phase shift amplitudeu . 

A first example error-compensating 8-frame SinPSI algorithm has a phase increment 4Δα = π , a starting offset 

phase 8ϕ = π , and nominal phase shift amplitude 2.93u = : 
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A second example of an error-compensating SinPSI algorithm uses 12-frames, has a phase increment 6Δα = π , a 

starting offset phase 12ϕ = π  and nominal phase shift amplitude 3.517u = : 
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These example SinPSI algorithms have been designed with a high degree of symmetry, such that there are only a few 
independent values for the coefficients.  They have also been designed to balance harmonics so that they are stable with 
variations in the phase shift amplitudeu .  They represent a class of SinPSI algorithms that compensate for the most 
common error sources in a way that compares well with traditional linear PSI algorithms. 

5. ERROR ANALYSIS 

5.1 Phase shift calibration 

A classic performance criterion for PSI is sensitivity to deviations in the phase shift excursion from the expected or 
optimal value.  Some of these variations are inevitable—in a high-NA spherical Fizeau cavity with a mechanical phase 
shifting mechanism, the phase shift excursion varies as a function of angle. In other cases, there is an uncertainty or 
variability in the calibration of the phase shift.  

The effect of calibration on linear PSI is well understood and analytical formulas provide the measurement error as a 
function of calibration error [8].  Figure 6 shows these errors for the established 4-, 5- and 13-frame linear PSI 
algorithms provided in Eq.(3), Eq.(4) and Eq.(5).  

In SinPSI, the standard deviation of the phase error ε from phase-shift calibration error uδ  is  
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The error is cyclic at twice the rate ofθ , just as in linear phase shifting.    Figure 7 shows that the results for SinPSI are 
comparable to those of conventional linear PSI. 

5.2 Additive random noise  

Random noise changes the interference intensity signal from Eq.(2) to 
 

( ) ( ){ } ( ), 1 cos ,I t q V t n tθ = + θ+ φ + σ⎡ ⎤⎣ ⎦ , (24) 

 

where σ  is the rms of the random noise ( ),n tσ .  A mathematical analysis of additive random noise for SinPSI leads to 
the following formula for the rms phase error:  
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where 
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A similar formula can be derived for the case of linear PSI.   The summary results of Table 1 tell us the expected rms 
phase error rmsε for an rms noise level qVσ .  The tabulated results are scaled by 633 4nm π .  As expected, the 

 
Figure 6: Measurement error in nm rms at 633nm 

wavelength for the 4-, 5- and 13-frame linear 
PSI algorithms as a function of calibration error  

 
Figure 7: Measurement error in nm rms at 633nm 

wavelength for the 4-, 8- and 12-frame SinPSI 
algorithms as a function of calibration error. 



 
 

 
 

sensitivity to noise declines with the number of camera frames, approximately at the rate of the square root of the 
number of frames.  The comparison of SinPSI to linear PSI shows no appreciable differences. 

Table 1: The rms error in nm for a 633-nm light source for an rms random noise level of 1% of the signal amplitude. 

 error (nm)   error (nm) 

SinPSI 4 0.45  Linear 4 0.40 

SinPSI 8 0.32  Linear 5 0.37 

SinPSI 12 0.29  Linear 13 0.23 

5.3 Multiplicative noise  

Typical contributors to multiplicative noise include random and synchronous light source fluctuations.  Multiplicative 
noise changes the value of q  in Eq.(2).  For a pure, single-frequency noise, the intensity modifies to 

 

( ) ( ) ( ){ }, , , 1 cosI q n V′ ′θ α ν = + α ν + θ+ φ α⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  (28) 

 
where for a  frequencyν , rms σ  and phaseξ , the noise  is  

 

( ) [ ], 2 cosn ′ ′α ν = σ ν α + ξ . (29) 
 

We have derived the mathematical solution to the error analysis problem for noise levels of a few percent or less.  First 
define the functions for the odd harmonics 

 

 
Figure 9: Multiplicative noise sensitivity for SinPSI. 

Measurement error in nm standard deviation at 
633nm wavelength as a function of noise 
frequency, for an rms noise level of 1% of the 
signal strength. 

 
Figure 8: Multiplicative noise sensitivity for linear 

PSI. Measurement error in nm standard 
deviation at 633nm wavelength as a function of 
noise frequency, for an rms noise level of 1% of 
the signal strength.  
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and similar equations for the even harmonics. Then the formula for multiplicative errors in SinPSI is  
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where the rms error is 
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and the mean error (or error offset independent of θ ) is 
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There is an implicit dependence on the noise phase from Eq.(30), so Figure 9 shows noise sensitivity for the 4-, 8- and 
12-frame SinPSI algorithms calculated as the square root of the sum of the squares for two noise phases 
ξ =0 deg and ξ =90 deg.  Figure 8 shows the results of a similar analysis for the 4-, 5- and 13-frame linear PSI methods.  
In linear PSI, the peak sensitivity is given by the frequency of the interference signal itself, which is 1/4 the camera rate 
for the 4- and 5-frame algorithms and 1/8 the camera rate for the 13-frame algorithm.  In the case of SinPSI, even though 
the sampling is progressively slower with increasing numbers of frames, the longer algorithms operate at higher 
harmonics and therefore the peak sensitivity remains at higher frequencies.  We can conclude that there are no special 
problems with SinPSI when compared to linear PSI for multiplicative noise and that SinPSI may even present some 
advantages at low frequencies for the 8- and 12-frame error-compensating algorithms. 



 
 

 
 

5.4 Vibration 

Because the data acquisition takes place over time, sensitivity to vibration is a major issue for PSI.  The sensitivity as a 
function of vibrational frequency for linear PSI has been previously derived [9] and Figure 10 shows the results for the 
example algorithms from in Eq.(3), Eq.(4) and Eq.(5).  The peak sensitivity is at 1/2 the camera rate for the 4- and 5-
frame algorithms and 1/4 the camera rate for the 13-frame algorithm.   

The formula for the standard deviation ( )stdv ′ε ν  of vibration-induced errors in SinPSI uses the same definitions 
Eq.(30), Eq.(31), Eq.(32) and Eq.(33); where the rms error is now 
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the mean error (or error offset independent of θ ) is 
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and the standard deviation σ  of the vibrational noise is in units of radians. Figure 11 shows that the simple 4-frame 
SinPSI algorithm has a higher sensitivity to vibration when compared to the 4-frame linear PSI algorithm; however, the 
8- and 12-frame error-compensating SinPSI algorithms show performance comparable to the 5- and 13-frame linear PSI 
methods.  From this we conclude once again that SinPSI does not present any special problems for vibration sensitivity 
provided that we use more than 4 camera frames. 

 
Figure 10: Sensitivity to vibration for linear PSI. 

Measurement error in nm standard deviation at 
633nm wavelength as a function of vibrational 
frequency, for an rms vibration of 1nm.  

 
Figure 11: Sensitivity to vibration for SinPSI. 

Measurement error in nm standard deviation at 
633nm wavelength as a function of vibrational 
frequency, for an rms vibration of 1nm. 



 
 

 
 

5.5 Detector nonlinearity 

A nonlinearity of order 2n ≥  of a detector or camera 
may be defined by  

 

( )2 2
1
2

n
I q I qI q

q q

−⎡ ⎤⎛ ⎞ ⎛ ⎞− −⎢ ⎥Δ = ζ −⎜ ⎟ ⎜ ⎟
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 (38) 

 
where IΔ  refers to the deviation with respect to a linear 
fit to the detected signal I , and q  is the mean intensity.  
Figure 12 illustrates a quadratic nonlinearity.  Note 
thatζ  is the peak-valley (P-V) departure from linear 
over the full dynamic range of the detector.   

Detector nonlinearity is a particularly complex error 
source in SinPSI, generating a large spectrum of 
harmonics.  The results in Table 2 for both linear PSI and 
SinPSI are for a numerical simulation.   

From Table 2 we conclude that linear PSI has an advantage with respect to SinPSI when considering detector 
nonlinearity.  This is not a large source of concern for most detectors, given that the nonlinearity is usually better than 
<1%; but could be an issue e.g. with CMOS cameras. Detector nonlinearity in SinPSI can in theory generate ripple error 
at 4 times the fringe frequency; therefore, an effective strategy for suppressing these errors may be to average at least 
two acquisitions with an overall phase offset of ¼ of a fringe between them.    

 

Table 2: Sensitivity to detector nonlinearity of order n , expressed as the standard deviation in nm at 633nm for a 
nonlinearity of 1% P-V.    

 2n =  3n =  4n =  average 

SinPSI 4 0.22 0.13 0.17 0.17 

SinPSI 8 0.17 0.11 0.12 0.13 

SinPSI 12 0.03 0.15 0.13 0.10 

Linear 4 0.00 0.10 0.00 0.03 

Linear 5 0.00 0.10 0.07 0.06 

Linear 13 0.00 0.00 0.00 0.00 

 

5.6 Phase shift nonlinearity 

Although a sinusoid should in principle be easier to manage than a linear scan for most phase shifting mechanisms, there 
is nonetheless a possibility for nonlinear response, e.g. with a heavily-loaded mechanical phase shifter or low-voltage 
piezo actuator.  Common imperfections include quadratic and cubic nonlinearities, as illustrated in Figure 13 and Figure 
14, respectively. 

 
Figure 12: Quadratic detector nonlinearity ζ  of 29%  

P-V over a full range of 256 grey levels. 



 
 

 
 

Similarly to Eq.(38), a nonlinear phase shift may be written as a polynomial of order 2n ≥  using  
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where Δφ  refers to the deviation with respect to a linear fit to the desired phase shift φ , φ  is the mean phase and 

u is the phase shift amplitude. The results of numerical calculations for phase-shift nonlinearity in Table 3 shows an 
advantage of approximately a factor of two for linear PSI; but this advantage is not significant for the longer 
algorithms—both 12-frame SinPSI and 13-frame linear PSI show high tolerance for phase shifting errors.     

 

Table 3: Sensitivity to phase-shift nonlinearity of order n , expressed as the standard deviation in nm at 633nm for a 
nonlinearity of 1% P-V.    

 2n =  3n =  4n =  average 

SinPSI 4 0.14 0.22 0.04 0.13 

SinPSI 8 0.19 0.12 0.13 0.15 

SinPSI 12 0.01 0.04 0.02 0.02 

Linear 4 0.04 0.10 0.05 0.06 

Linear 5 0.11 0.02 0.08 0.07 

Linear 13 0.00 0.02 0.01 0.01 

 

 
Figure 14: Sinusoidal phase shift with a 3rd-order 

nonlinearity ζ of 40% P-V. 

 
Figure 13: Sinusoidal phase shift with a quadratic 

nonlinearity ζ of 40% P-V.  



 
 

 
 

5.7 Phase shift timing error 

SinPSI has some error considerations that do not appear at all in linear PSI.  In this section, we consider the importance 
of synchronizing the data acquisition with the starting point for the sinusoidal phase shift.  This is not a requirement in 
linear PSI—we can begin to grab camera frames anytime during the linear phase shift and the profile results, apart from 
an overall offset, do not change.  The original Sasaki SinPSI algorithm introduced in 1989 had a slightly alarming 
sensitivity to phase shift timing, requiring a synchronization of <1.5 degree to maintain a standard deviation of <1nm 
[6].  One goal of the present work was to relax this requirement. 

To calculate the effect of timing error, first redefine Eq.(14) through Eq.(17) for an unintended phase offset δϕ : 
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where now 
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The standard deviation of the measurement phase error is then 
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where ,odd evenΓ Γ  are the normalizing coefficients for 
the case where there is no timing error.    

The results in Figure 15 show that for the algorithms 
defined in this paper, timing error is not a critical issue.  
The 4-frame algorithm has significantly reduced 
sensitivity when compared to Sasaki’s original algorithm, 
and the 12-frame algorithm has <0.1nm error with as 
much as 16 deg of timing offset. 

 
Figure 15: Effect of a timing error between the 

beginning of the sinusoidal phase shift and the 
camera trigger for SinPSI. 



 
 

 
 

6. CONCLUSIONS 
The new algorithms and error analysis in this paper have shown that SinPSI can provide competitive performance to 
traditional linear PSI while enjoying the benefits of the less demanding sinusoidal mechanical scan.  The computational 
burden is no higher, and the algorithm performance is equivalent or better than for linear phase shifting, provided that 
modest measures are taken to control detector nonlinearity and synchronize the data acquisition with the sinusoidal 
phase shifting cycle. 

We conclude from this study that SinPSI is a viable and useful alternative phase-shifting strategy for a variety of 
applications from optical testing to interference microscopy, and is of particular interest where the measurement 
performance is limited by the characteristics of the phase shifting mechanism.  The next step in our on-going research 
will be to integrate the sinusoidal drive in a complete system with appropriate software for experimental evaluation. 
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