ZMI 7722 Delivery Module

<table>
<thead>
<tr>
<th>P/N's</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>8070-0351-02</td>
<td>10 mm beam diameter</td>
</tr>
<tr>
<td>8070-0268-02</td>
<td>6 mm beam diameter</td>
</tr>
</tbody>
</table>

PHYSICAL CHARACTERISTICS
- Dimensions: See Figure
- Weight: 2.5 Kg
- Nom. Cable Clearance: 135 mm
- Materials: Delivery Module frame – Ni-plated Al, Mounting flange – 303 Stainless Steel, Cover – 304 Stainless Steel

ELECTRICAL
- Power Requirements: Supplied from Laser Module
- Heat Dissipation: < 20 mW

LASER BEAM CHARACTERISTICS
- Type: Helium-Neon, continuous wave, heterodyne
- Frequency Difference: 20 MHz ± 1600 Hz, F1 > F2
- F1: vertical polarization (parallel to plane defined by optical axis and polarization pin):
- F2: horizontal polarization (perpendicular to plane defined by optical axis and polarization pin)
- Maximum Power Difference Between Polarizations: 5% of total power
- Polarization Orientation Tolerance: ± 0.3°
- Efficiency: ≥ 75%
- Heterodyne Mixing Efficiency: ≥ 95%

LASER BEAM CHARACTERISTICS CONTINUED
- Polarization Mixing (1): 0.25 nm
- Beam Pointing Stability: < 1 μrad per °C ambient temperature change
- Beam Position (2): ± 250 μm
- Beam Pointing (2): ± 250 μrad
- Beam Pointing Change with Fiber Exchange: ≤ 5 μrad
- Offset of f1 and f2 beams at aperture: < 0.20 mm
- Wavefront Irregularity: ≤ λ/50 rms
- DHHS Laser Safety Classification: Class IIIa, conforms to NCDRH regulations
- IEC Laser Safety Classification: 3R

ENVIRONMENTAL
- Operating Temperature: 20 to 23°C
- Temperature Variation in User Process: ± 1°C
- Maximum Rate of Ambient Temperature Change: 0.033°C per minute
- Humidity: 0 to 70% (non-condensing)
- Shock: 11 milliseconds 40G shock on each of three orthogonal axes

1. The extinction of the heterodyne frequency using a Glan-Thompson prism (oriented at 0.00° or 90.00°) with an extinction ratio of < 10^-5, will be less than 100 parts per million of the maximum signal (prism oriented at 45.00°)
2. Static beam specifications are in reference to a line which (a) is normal to the plane defined by the three mounting pads of the flange and (b) passes through the center of the circle defined by the outside diameter of the flange pilot.